On Commutation Relations for 3-Graded Lie Algebras

نویسنده

  • M. P. de Oliveira
چکیده

We prove some commutation relations for a 3-graded Lie algebra, i.e., a Z-graded Lie algebra whose nonzero homogeneous elements have degrees −1, 0 or 1, over a field K. In particular, we examine the free 3-graded Lie algebra generated by an element of degree −1 and another of degree 1. We show that if K has characteristic zero, such a Lie algebra can be realized as a Lie algebra of matrices over polynomials in one indeterminate. In the end, we apply the results obtained to derive the classical commutation relations for elements in the universal enveloping algebra of sl2(K).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic Deformation Theory of Lie Algebras

This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...

متن کامل

Heisenberg–Lie commutation relations in Banach algebras

Given q1, q2 ∈ C \ {0}, we construct a unital Banach algebra Bq1,q2 which contains a universal normalized solution to the (q1, q2)-deformed Heisenberg–Lie commutation relations in the following specific sense: (i) Bq1,q2 contains elements b1, b2, and b3 which satisfy the (q1, q2)-deformed Heisenberg–Lie commutation relations (that is, b1b2 − q1b2b1 = b3, q2b1b3 − b3b1 = 0, and b2b3 − q2b3b2 = 0...

متن کامل

Coordinate Realizations of Deformed Lie Algebras with Three Generators

Differential realizations in coordinate space for deformed Lie algebras with three generators are obtained using bosonic creation and annihilation operators satisfying Heisenberg commutation relations. The unified treatment presented here contains as special cases all previously given coordinate realizations of so(2, 1), so(3) and their deformations. Applications to physical problems involving ...

متن کامل

Quadratic algebras :Three-mode bosonic realizations and applications

In recent times there has been a great deal of interest in non-linear deformations of Lie algebras because of their significant applications in several branches of physics. This is largely based on the realization that the physical operators relevant for defining the dynamical algebra of a system need not be closed under a linear (Lie) algebra, but might obey a nonlinear algebra. Such nonlinear...

متن کامل

Theory of Spin Dynamics of Multipulse NMR with Application to Single Crystals of KBr

I. Theory 32 A. What is spin? 32 1. Stern-Gerlach Results . 34 2. Summary of Experimental Evidence for Spin 34 3. Spin 1/2 States 37 4. Vector Spin Operator 37 5. Commutation Relations 39 6. Matrix Representation of Spin 1/2 40 7. Rotation of Spin 1/2 40 8. Density Operator for a Spin 1/2 . . . 41 9. Uncertainty Relations 44 10. Coherence , 45 B. Theories for Calculating Spin Dynamics 45 1. Fey...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001